On Gelfand–Dickey and Drinfeld–Sokolov Systems

نویسندگان

  • F. Gesztesy
  • D. Race
  • K. Unterkofler
  • R. Weikard
چکیده

We study the connections between Gelfand–Dickey (GD) systems and their modified counterparts, the Drinfeld–Sokolov (DS) systems in the case of general matrix–valued coefficients with entries in a commutative algebra over an arbitrary field. Our main results describe auto–Bäcklund transformations for the GD hierarchy based on Miura–type transformations associated with factorizations of n-th order linear differential expressions. Department of Mathematics, University of Missouri, Columbia, MO 65211, USA. E–Mail: [email protected] Department of Mathematical and Computing Sciences, University of Surrey, Guildford, Surrey GU2 5XH, England. E–Mail: [email protected] Institute for Theoretical Physics, Technical University of Graz, A–8010 Graz, Austria. Supported by Fonds zur Förderung der wissenschaftlichen Forschung in Österreich by an E. Schrödinger Fellowship and by Project No. P7425 Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294, USA. E–Mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction

The p × p matrix version of the r-KdV hierarchy has been recently treated as the reduced system arising in a Drinfeld-Sokolov type Hamiltonian symmetry reduction applied to a Poisson submanifold in the dual of the Lie algebra ĝlpr ⊗CI [λ, λ]. Here a series of extensions of this matrix Gelfand-Dickey system is derived by means of a generalized Drinfeld-Sokolov reduction defined for the Lie algeb...

متن کامل

Nonstandard Drinfeld-Sokolov reduction

Subject to some conditions, the input data for the Drinfeld-Sokolov construction of KdV type hierarchies is a quadruplet (A,Λ, d1, d0), where the di are Z-gradations of a loop algebra A and Λ ∈ A is a semisimple element of nonzero d1-grade. A new sufficient condition on the quadruplet under which the construction works is proposed and examples are presented. The proposal relies on splitting the...

متن کامل

Extended matrix Gelfand-Dickey hierarchies: reduction to classical Lie algebras

The Drinfeld-Sokolov reduction method has been used to associate with gln extensions of the matrix r-KdV system. Reductions of these systems to the fixed point sets of involutive Poisson maps, implementing reduction of gln to classical Lie algebras of type B, C, D, are here presented. Modifications corresponding, in the first place to factorisation of the Lax operator, and then to Wakimoto real...

متن کامل

Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies

Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al, reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra l(gln), graded regular elem...

متن کامل

ar X iv : h ep - t h / 93 12 12 3 v 2 7 J an 1 99 4 Affine Gelfand - Dickey brackets and holomorphic vector bundles

We define the (second) Adler-Gelfand-Dickey Poisson structure on differential operators over an elliptic curve and classify symplectic leaves of this structure. This problem turns out to be equivalent to classification of coadjoint orbits for double loop algebras, conjugacy classes in loop groups, and holomorphic vector bundles over the elliptic curve. We show that symplectic leaves have a fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994